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Abstract— The growing demand for air travel is increasing the
need for mitigation of air traffic congestion and complexity
problems, which are already at high levels. At the same time new
information and automation technologies are enabling the
distribution of tasks and decisions from the service providers to
the users of the air traffic system, with potential capacity and cost
benefits. This distribution of tasks and decisions raises the
concern that independent user actions will decrease the
predictability and increase the complexity of the traffic system,
hence inhibiting and possibly reversing any potential benefits. In
answer to this concern, the authors propose the introduction of
decision-making metrics for preserving user trajectory flexibility.
The hypothesis is that such metrics will make user actions
naturally mitigate traffic complexity. In this paper, the impact of
using these metrics on traffic complexity is investigated. The
scenarios analyzed include aircraft in en route airspace with each
aircraft meeting a required time of arrival in a one-hour time
horizon while mitigating the risk of loss of separation with the
other aircraft, thus preserving its trajectory flexibility. The
experiments showed promising results in that the individual
trajectory flexibility preservation induced self-separation and
self-organization effects in the overall traffic situation. The effects
were quantified using traffic complexity metrics based on
Lyapunov exponents and traffic proximity.

Keywords-Trajectroy flexibility, traffic complexity; adaptability,
robustness, separation assurance, self separation; self organizing,
distributed air traffic management

I. INTRODUCTION

The Next Generation Air Transportation System (NextGen)
is expected to receive up to three times the current traffic
demand by the year 2025 [1]. In order to handle this increase in
air traffic, NextGen will introduce key transformations in Air
Traffic Management (ATM). Three examples of the
transformations are: increasing information sharing through
net-enabled information access; making access to National
Airspace System (NAS) resources dependent on aircraft
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equipage; and aircraft trajectory-based operations enabled by
aircraft ability to precisely follow customized four dimensional
(4D) trajectories [1]. These capabilities enable a more optimal
allocation of functions among the air traffic system agents,
such as shifting the ATM system towards a distributed
architecture [2]. For example, NextGen is investigating
delegating more responsibility for traffic separation to the pilot
[2, 3] and delegating more responsibility to airline operation
centers for traffic flow management [3, 4]. Enabling the gains
of distributed decision making depends on the ability of
distributed actions to maintain safety and efficiency at
acceptable levels.

Research on distributed ATM has focused, in part, on the
distribution of separation responsibility between pilots and
controllers. Pilots are assisted in predicting and resolving loss
of separation by cockpit automation, known generally as
Airborne Separation Assistance Systems (ASAS) [5, 6]. Early
ASAS experiments showed positive results of self separation
operations [7, 8]. Research has also concentrated on assisting
ground-based controllers with automation, such as the Center
TRACON Automation System [9]. Distributed traffic flow
management has been limited to the incorporation of user
preferences in traffic manager decisions with recent efforts to
increase user responsibility [4].

Neglecting to regulate traffic beyond the separation
assurance time horizon may cause complex traffic situations to
arise. Many approaches have been documented to define and
measure traffic complexity, most often as a function of
controller workload. These metrics are primarily based on
airspace geometry such as aircraft density and mix, sector
geometry, traffic flow structure, and mix of aircraft types and
performance characteristics [10]. Other efforts emphasized
cognitive elements of complexity, in particular the controller
use of standard flows, grouping of traffic, and merge points
[11]. Some metrics have been proposed that are independent of
the airspace structure and controller perspective. For example,



Delahaye et al. [12] introduced complexity metrics based on
traffic organization or disorder (topological entropy). Complex
traffic situations may be difficult to control, whether by
ground-based or by aircraft-based agents, leading to
compromised safety. Therefore, reducing or preventing such
situations is a prerequisite to enabling manageable separation
assurance and safety.

In order to mitigate traffic complexity, ground and airborne
systems may benefit from preserving trajectory flexibility.
Trajectory flexibility preservation enables an aircraft to plan its
trajectory such that it preserves a requisite level of
maneuvering flexibility in order to accommodate later
disturbances caused, for example, by other traffic and weather
activity. The hypothesis is that if each aircraft preserves its own
trajectory flexibility, using an air-based or ground-based
system, acceptable traffic complexity will naturally be
achieved. As discussed in [13, 14], although flexibility
preservation does not explicitly coordinate between aircraft, it
assists each by reducing the risk of conflict due to the potential
behavior of the surrounding traffic, thus resulting in implicit
coordination. This function offers a trajectory-oriented
approach to managing traffic complexity, by explicitly
planning aircraft trajectories, such that their contribution to
complexity is minimized. This is contrasted with airspace-
oriented approaches that aim to ensure that airspace
characteristics (such as sector size and route patterns) and
traffic characteristics (such as aircraft density) are designed to
dynamically limit traffic complexity.

Flexibility preservation complements separation assurance
both within the conflict resolution horizon and beyond it to an
extended flexibility planning horizon. Within the conflict
resolution horizon, flexibility aids in selecting conflict
resolution solutions that afford the aircraft more flexibility, for
example, to adapt to potential intruder behavior. Beyond the
conflict resolution horizon, which is the focus of this paper,
flexibility preservation plans the aircraft trajectory to minimize
its exposure to disturbances such as weather cells and dense
traffic. Fig. 1 depicts an example. In its upper portion each
aircraft, while planning its trajectory between weather cells,
questions whether it should modify its trajectory to increase
flexibility. If the aircraft proceed along their depicted headings,
a complex traffic situation arises causing excessive congestion
and a high potential conflict rate. On the other hand, the lower
portion displays a structured traffic pattern that would result if
each aircraft maneuvered to increase its own flexibility.

To test this hypothesis, trajectory flexibility metrics have
been defined in previous work to represent robustness and
adaptability to the risk of violating separation, airspace hazards,
and traffic flow management constraints [14-16]. In this paper,
the impact of using these metrics on traffic complexity is
analyzed. Two scenarios are analyzed in two-dimensional en
route airspace, where each aircraft must meet a required time of
arrival (RTA) in a one-hour time horizon using speed and
heading degrees of freedom. Simultaneously, each aircraft
preserves its trajectory flexibility, using the defined metrics, to
mitigate the risk of loss of separation with the other aircraft.
The effects were quantified using traffic complexity metrics
based on Lyapunov exponents [12], flow pattern consistency,
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Figure 1. Trajectory Flexibility Preservation

and proximity. The experiments showed promising results in
terms of mitigating complexity as measured by these metrics.

II. METRICS

Metrics that represent trajectory flexibility have been
developed and reported in previous papers [15-16] and are
summarized briefly in this section. To test the hypothesis,
traffic complexity metrics based on intrinsic trajectory
complexity [12], traffic pattern consistency and proximity were
used. These metrics are also briefly described in this section.

A. Trajectory Flexibility Metrics

The notion of “trajectory flexibility” was defined in [14] as
the ability of the trajectory (and hence the aircraft following the
trajectory) to abide by all constraints imposed on it while
mitigating its exposure to risks that cause violation of these
constraints. The constraints intend to achieve ATM and aircraft
objectives and include heading limits, RTAs, and separation
minima. They define the trajectory solution space. Risk of
constraint violation is represented by disturbances that cause
the aircraft trajectory to violate or potentially violate
constraints. Disturbances were classified in [14-16] into state
disturbances that result in aircraft state deviation along its
trajectory or constraint disturbances such as new constraints or
modifications of currently imposed or known potential
constraints.

Two trajectory characteristics relevant to measuring this
notion of flexibility have been identified: robustness and
adaptability [14]. Metrics have been proposed for robustness
and adaptability based on estimating the number of feasible
trajectories available to the aircraft to accommodate



disturbances [15-16]. In order to support these definitions and
estimation methods, the following assumptions are made:

(1) The aircraft is assumed to follow segments of discrete
time length, where instantaneous heading and speed changes
can only occur at discrete instances in time that are a apart.

(2) Heading h and speed V take discrete values between
hmin and hmax and between Vmin and Vmax and are constant along
each segment. (Altitude is not considered in this paper.)

In addition to simplifying the estimation method, these
assumptions are reasonable from an operational point of view
considering the intended application of the trajectory flexibility
metrics. Namely, the metrics are intended for relative
comparison of trajectories over a long time horizon suitable for
strategic planning (typical of traffic flow management planning
horizon) as opposed to tactical maneuvering (where the
dynamics of the speed and heading change are relevant).

(1) Robustness is defined as the ability of the aircraft to
keep its planned trajectory unchanged in response to the
occurrence of disturbances. For example, a trajectory that
remains feasible in terms of meeting an RTA and maintaining
separation despite the disturbances (i.e., no matter which
trajectory or conflict instances materialize) is robust to these
disturbances.

A robustness metric RBT(traj) is associated with a
trajectory (traj) starting from a state (t, x, y) and ending at
another state such as (RTA, xdest, ydest). RBT(traj) is measured
with the probability of feasibility P f(traj) of the trajectory,
which can be estimated with partial information about state and
constraint disturbances that represent the risk of constraint
violation or infeasibility. Estimating Pf(traj) requires
probabilistic models of the state and constraint disturbances. As
an example, consider a state disturbance that makes every
trajectory instance from a state (t, x, y) to the destination e.g.,
(RTA, xdest, ydest) possible with equal probability. In this case,
the trajectory (traj) is modeled by N(t, x, y) instances (traj i)
each with equal probability

Pi (t, x, y) = 	
1
	 , with 

1 EP =1.
N(t, x, y)	 i=1 i

Each constraint situation c divides the total set of
trajectories N(t, x, y) into two mutually exclusive subsets: fc(t,
x, y) the set of feasible trajectories with respect to c and ic(t, x,
y) the set of infeasible trajectories with respect to c. Hence, N(t,
x, y) = fc(t, x, y) + i c(t, x, y). Then, the following formula can
be derived for robustness RBT(t, x, y); see [15, 16] for more
detailed derivation:

(2) Adaptability is defined as the ability of the aircraft to
change its planned trajectory in response to the occurrence of a
disturbance that renders the current planned trajectory
infeasible. An adaptability metric ADP(t, x, y) is associated
with a state (t, x, y) along a trajectory and is measured by the
number of feasible trajectories f(t, x, y) (with respect to all
constraints) that are available for the aircraft to use at (t, x, y) to
regain feasibility. Then, given the probability distribution (P c)
of each constraint situation c of C, ADP may be estimated by
the average over C:

c C=

ADP(t, x, y) = f (t, x, y) = ∑ Pc × fc (t, x, y) . 	 (2)
c= 1

Adaptability decreases as the aircraft moves along a
trajectory because the number of feasible trajectories decreases.
The special case of robustness given by (1) (robustness to
totally random state disturbances) increases over time because
as the number of feasible trajectories (numerator) decreases the
total number of trajectories (denominator) decreases more
rapidly by both infeasible and feasible trajectories.

B. Traffic Complexity Metric

The impact of planning trajectories using the adaptability
and robustness metrics on traffic complexity was assessed
using three main indicators: an intrinsic trajectory-based
complexity metric, consistency of a resulting flow pattern, and
proximity between aircraft.

The intrinsic traffic complexity metric is based on the non-
linear dynamic system modeling of the aircraft trajectories.
This metric identifies any kind of trajectories organization in
the airspace by the mean of Lyapunov exponents map
computation. Based on the observations of the aircraft
(positions, speed vectors and times), a non linear space-time
dynamic system has to be adjusted with the minimum error.

r	 r
X(t) = f(X, t)	 (3)

i=

7-N+ kk-
K

min 1: 1: IIVi (t k )− f(^ŷ i, t k ) I
i= 1 k= 1

where N is the number of aircraft and K the number of samples
per aircraft trajectory.

There are many classical ways of obtaining a class of
parametrized vector fields that fulfill the fitting requirement.
Among them, vector splines allow control on the smoothness
of vector fields, which is important in this case since civil
aircraft maneuvers are based on low acceleration guidance
laws. The vector field is designed to minimize a function form

(1), ,	 f	 c, ,	

c=1	 f
c 
(t, x, y) + i c (t, x, y)

where Pf,c is the probability of feasibility of the trajectory traj in
a constraint situation c, and is equal to the ratio of the number
of feasible trajectories fc to the total number of trajectories N.
The constraints are modeled with C constraint situations c each
with a probability P c with c =  C

Pc = 1

= 1

r rr r	 r r
min ∫R4 ∫R α ∇divf(X,t) 2+ β∇curlf(X,t) + 

∂f(X,t) d
	 (4)

∂t 
^

with a, 0 ,y positive real numbers controlling the smoothness of
the approximation by focusing on constant divergence or
constant curl.

Computing traffic complexity for a given traffic situation
requires interpolating a vector field given only samples
(positions and speeds of aircraft at given times). Vector spline
interpolation seeks the minimum error between the observation

Pfc (t, x, y) = 
fc (t, x, y)

N(t, x, y)
c=C 	 fc(t,x,y)

RBT(t x y) = P (t x y) = ∑ P ×



and the model. This adjustment is done with a Least Square
Minimization (LMS). The metric chosen for complexity
computation relies on a measure of sensitivity to initial
conditions of the underlying dynamic system called Lyapunov
exponents. The Lyapunov exponents are closely related to the
singular values of the gradient matrix on the vector field at a
given point.

r	 i n=

κ(f) = 1 ∑ D X 4φ(t,^))I2	
(5)

n i=1

r
where D X is the gradient matrix of the field at point X and

r	 r
φ(t, X) the point trajectory of the dynamic system at point X.

When Lyapunov exponents are high, the trajectory of a
point under the action of the dynamic system is very sensitive
to the initial conditions (or parameters on which the vector field
may depend), so that the situation in the future is unpredictable.
On the other hand, small values of the Lyapunov exponents
mean that the future is highly predictable (very organized
traffic). So, the Lyapunov exponent map determines the area
where the underlying dynamic system is organized. It identifies
the places where the relative distances between aircraft do not
change with time (low real value) and the ones where such
distance changes a lot (high real value). More information
about this metric may be found in [12].

Flow pattern consistency was also measured by the
percentage of aircraft that followed a consistent pattern. The
pattern was readily apparent visually so no clustering technique
was employed in the scenarios analyzed in this paper. The
pattern, as described in Section IV, was scenario dependent.
Traffic proximity was measured by the number of aircraft-
seconds that are less than a threshold distance apart.

III. TRAJECTORY GENERATION ALGORITHM

A dynamic programming algorithm was used to generate an
aircraft trajectory using the robustness and adaptability metrics.
Because the intention of this analysis is to test a hypothesis
rather than a real-time application, the dynamic programming
approach was selected due to its simple formulation and despite
its numerical and storage limitations. First the trajectory
solution space is built as a tree of discrete states connected
according to reachability by the allowable discrete speed and
heading values over the discrete time increments. Second, the
robustness and adaptability metrics are estimated at each state.
Third and finally a back-propagation algorithm computes a cost
function and builds a trajectory that optimizes the cost function.

A. Flexibility Metric Estimation

The calculation of the adaptability and robustness metrics
requires estimation of the number of feasible trajectories from a
state (t, x, y) to the destination (location, time, or both). A
method was developed in [15] and [16] for varying speed along
a fixed path and for varying heading, respectively. Here, this
method is generalized to scenarios involving both speed and
heading as degrees of freedom in situations involving RTA and
separation constraints, under the two simplifying assumptions
of discrete time, heading and speed, described in Section A.

Under these assumptions, the number of trajectories may be
estimated using a convolution and filtering technique. Fig. 2
demonstrates this method for calculating fc(t, x, y) from any
point (t, x, y) to a destination specified by a point (RTA, x dest,

ydest) and a tolerance circle around it in the x-y plane, in a
constraint situation c that includes an instance of a potential
conflict. The three-dimensional space is discretized into time
steps s-apart, where in each time step, the x-y plane is
discretized into square cells. The function fc(t, x, y) is estimated
for each cell. Assume the function fc(tj , x, y) at time tj is known.
The function fc(tj-1, x, y) at the previous time step tj-1 can be
obtained by convoluting fc(tj , x, y) and the function gk(x, y),
which represents the number of trajectories that reach from a
point k=(tj-1, x(k), y(k)) at time step tj-1 to the next time step tj .
The function g is independent of time. There is one trajectory
that reaches from point k at step tj-1 to each of a set of discrete
locations at step tj – each corresponds to one pair of discrete
heading and speed values. Therefore, the reachability function
gk(x, y) which is shown as a conical shell in Fig. 2 is given by:

g k (x, y) = 1 :(t j , x, y) ∈

{(t
j
,x(k) + V in 

cos (h
min

)ε , y(k) +V
min

sin(h
min

)ε ), ... , (6)
(t j , x(k) + Vi cos(h i )ε, y(k) + Vi sin(h i )ε), • • •,

(t j , x(k) + V
max 

cos(h
max

 )ε, y(k) + V
max

sin(h
max

 )ε)}

g k (x, y) = 0	 elsewhere

The convolution operation amounts to calculating fc(tj-1,

x(k), y(k)) at point k, by multiplying the values of fc(tj , x, y) by
the number of trajectories that reach from point k to (tj , x, y)
and adding them, and then repeating the operation for each
point k in the x-y plane at time step tj-1. However, if the point k
is infeasible (for example due to loss of separation) then fc(tj-1,

x(k), y(k)) = 0. This requires a filtering step before each
convolution operation to zero out the values at infeasible states.
Substituting a dummy variable i to denote sliding the point k in
the x-y plane, the function fc(tj-1, x, y) is given by the following
equation, representing convolution and filtering for
infeasibility:

fc (tj-„ x, y) = ∑∑ fc (t j ,  τ,  λ)g(x - τ, y - λ) if feasible	 (7)
λ τ

fc (tj-„ x, y) = 0	 if infeasible
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Figure 2. Discrete estimation of number of
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This operation is applied starting from the destination step t
= RTA and proceeding backwards to the current state. The
destination time step is initialized by setting fc(RTA, x, y) = 1
at the feasible states and zero elsewhere as shown in Fig. 2.

To compute the total number of trajectories, N(t, x, y) used
in the denominator of the robustness metric RBT, certain
constraints are excluded from the filtering process (namely the
constraints with respect to which robustness is computed). In
this paper robustness only to loss of separation with traffic and
hazards is considered. Therefore, the numerator filtering was
applied to all cells that lead to separation loss as well as cells
that lead to violating speed and heading limits or violating the
RTA constraint. On the other hand filtering ignored loss of
separation but was applied to the RTA and heading and speed
limit constraints for calculating the denominator.

Separation zones were modeled as circles with given radii
surrounding each intruder aircraft trajectory. Because a
trajectory consists of discrete segments, each with constant
speed and heading, the circle moves with constant speed and
heading for the duration of each segment. In each segment, the
circle is enclosed with eight tangent planes, each two opposing
tangents resulting from a combination of heading and speed
limits of the ownship aircraft relative to the intruder (There are
four such combinations). A cell loses (or is imminent to lose)
separation if it falls on the inside of all eight planes, within the
time duration of the segment. The intersection of these planes
with the solution space blocks polygon areas in the x-y grids, as
shown in Fig. 2 for one segment. Hazards are similarly
modeled as circles with zero speed. Therefore, the hazard circle
is enclosed with four tangent planes rather than eight.

Under probabilistic models of disturbances, the estimation
process is repeated for each constraint situation c. Then, the
estimates fc(t, x, y) are averaged over all situations C to obtain
the adaptability or robustness metrics (1) and (2). The
convolution operation produces an exponential growth of the
number of feasible trajectories fc(t, x, y) backwards with time,
depicting the decrease of adaptability with time. The infeasible
regions eliminate trajectories as the function fc(t, x, y) is zeroed
at these states. This produces troughs or valleys in the function
fc(t, x, y) depicting the impact of constraints. These are shown
in Fig. 3 and 4 for an analysis case.

B. Cost Function and Trajectory Building

Given the structure of the solution space, dynamic
programming offers a straightforward method to build an
optimal trajectory. Using recursive back-propagation and
starting from the final time step, the minimum cost of
proceeding from each cell to the destination is computed and
stored. This minimum cost Q(t, x(k), y(k)) for each cell k is
computed by minimizing, over its reachable cells given by
{(t+1, x, y) :gk(t+1, x, y) = 1} in the next time step t+1, the sum
of the minimum cost Q(t+1, x, y) already computed for each of
the reachable cells (t+1, x, y) plus the cost of proceeding from
k to that cell, given for short by q(k 4 (t+1, x, y)). A generic
formula is:

Q(t,x(k),y(k)) =
x y g

Min
 y)= 1

{Q(t + 1, x, y) + q(k
 

→ (t + 1, x, y)} (8)

Four functions for the local cost, q, were used in the
experiments reported in this paper. A function representing
minimal path length was used as a baseline. Functions
representing maximizing adaptability, maximizing robustness,
and maximizing both combined with minimizing path length:

q(k → (t + 1, x, y)) = distance(k → (t + 1, x, y)) = dist (9)

q(k → (t + 1, x, y)) = −ADP(k) (10)

q(k → (t + 1, x, y)) = −RBT(k) (11)

q(k → (t + 1,x,y)) =−ADP(k) − a T RBT(k) + b T dist (12)

where a and b are weights that trade robustness and distance,
respectively, with adaptability. They are raised to the power of
time T (measured from the final time step) to account for the
exponential growth of ADP. Note that while the accumulated
distance over time is minimized, ADP and RBT are maximized
at each time step (because their accumulation at any point is
identical over all trajectories to the destination).

After storing the optimal costs for each cell, a forward loop
builds a trajectory by tracing the optimal cells starting from the
initial state. Any ties between cells were broken randomly.

IV. COMPLEXITY IMPACT ANALYSIS

The estimation technique and trajectory optimization
algorithm were implemented in a MATLAB tool. The resulting
trajectories were analyzed using the traffic complexity metrics
described in Section III B. First the two scenarios reported in
this paper are described. Second, observations are made on the
impact of trajectory planning, using the four cost functions (9)
through (12), on traffic complexity.

A. Analysis Scenarios

The first of two scenarios consists of a line of weather cells
leaving two holes for which two flows of traffic compete. The
two traffic flows travel in opposite directions: one starts at x =
0, y = — 120 nautical miles and heads towards x = 0, y = 80
nautical miles. The other flow starts at x = 0, y = 120 and ends
at x = 0, y = —80 nautical miles. Five weather hazard cells are
modeled as circles with a radius of 20 nautical miles, and
located at x = 0 and y = {0, ±70, ±120 nautical miles} as shown
in Fig. 5. The geometry of the hazards and of the traffic start
and end positions is selected to provide symmetry, such that the
path length alone is not a differentiator for selecting among the
two holes. This ensures highlighting the impact of the
robustness and adaptability metrics compared to shortest path.
Each traffic flow is generated with random entry times
separated by intervals between five and seven minutes. All
aircraft are limited to headings of ±60 degrees relative to the
centerline connecting the start and end positions, with 10-
degree increments. They are also limited to a speed between
240 and 360 knots with 10-knot increments. Each aircraft is
assigned an RTA at the destination that forces the aircraft to
path stretch to meet the RTA. This was ensured by setting the
RTA up to 10 minutes above the travel time at minimum speed
along a straight path. The RTA is met exactly with no tolerance
at the destination point allowed.

The second scenario consists of a weather cell that causes
four traffic flows crossing at right angles to go around the



weather cell in a round about. The weather cell is modeled as a
circle with radius of 30 nautical miles located at (x = 0, y = 0).
The four traffic flows originate at (x = 0, y = —120), (x = 0, y =
120), (x = —120, y = 0) and (x = 120, y = 0). They end
respectively at (x = 0, y = 80), (x = 0, y = —80), (x = 80, y = 0)
and (x = —80, y = 0). All units are in nautical miles. Eight other
hazard circles are added at the corners as shown in Fig. 6
(discussed in Section B) to increase the traffic interaction
around the hazard located in the center. The speed and heading
limits and increments are the same as in the first scenario. The
entry times for each flow ranged between 6 and 8 minutes.

In both scenarios, each aircraft plans a trajectory to meet
the RTA (using speed reduction and path stretching),
optimizing the four cost functions (9) through (12). Time
increments of 2 minutes and square x-y cells of 2 nautical miles
are used in the estimation of the number of trajectories. The
first aircraft does not encounter any traffic as it plans its
trajectory. Then, each following aircraft plans its trajectory
assuming knowledge of the trajectories of all preceding
aircraft. These trajectories are surrounded by separation zones
that, in addition to the weather hazards, are avoided by the
aircraft. Hazards and separation zones reduce the number of
feasible trajectories. Therefore, earlier aircraft are given
priority while each later aircraft encounters exceedingly more
traffic. No dynamic trajectory modification is considered in the
experiments run for this analysis. Each aircraft generates one
trajectory upon its entry and maintains this trajectory
throughout. Also the experiment runs considered only
deterministic aircraft behavior. One trajectory is considered for
each aircraft with probability of one. However, the separation
requirement around each aircraft was set to 10 nautical miles
(instead of the required 5 nautical miles) in order to capture the
higher uncertainty in the rather long time horizon of these
experiments. Fig. 3 shows an example of the adaptability
metric (ADP) at one time step of the solution space, for an
aircraft that encounters the hazards of the first scenario. Color
shades are used to depict the log of the number of feasible
trajectories. Fig. 4 shows an example of the robustness metric
(RBT) at one time step of the solution space using color shades.
Note that adaptability is highest near the center of the solution
space around the central hazard, while robustness is highest
near the extremities of the solution space away from the central
hazard. Also note that robustness here is with respect to the
hazards and loss of separation only and not to the RTA
constraint or the speed and heading limits. Finally it should be
noted that the solution space is smaller in Fig. 4 because it is an
earlier time step and that these figures are in a relative frame
with respect to an aircraft (hence the hazard y-location is 120
nautical miles rather than zero).

Each scenario contained 80 aircraft distributed evenly
among the flows. The resulting trajectories consist of heading
and speed decisions at each two-minute increment. They are
then interpolated with 30 second time steps assuming constant
speed and heading in each two-minute time increment. Finally
they are analyzed for traffic complexity.

B. Results and Observations

Fig. 5 (a-e) demonstrates the resulting flow patterns in the
first scenario and Fig. 6 (a-e) those in the second scenario,

Figure 3. Example of adaptability metric map

Figure 4. Example of robustness metric map

using an eight-minute time history. As a baseline, the shortest
path cost function (9) was run twice, once without avoiding the
other traffic (case a) and once with avoiding it (case b). Traffic
avoidance was turned off to depict current practice where
conflict avoidance is only applied in a short time horizon of 10
to 20 minutes. Shortest-path with traffic avoidance sets another
baseline for demonstrating the marginal effect of using the
adaptability and robustness metrics in cases c-e. When using
the adaptability and robustness metrics (cases c-e) traffic is
naturally avoided because the number of trajectories at cells
that lose separation is zero. However, avoiding loss of
separation is not guaranteed because of the coarse
discretization of the solution space. The larger the time and
space increments, the larger the chance of losing separation.

Traffic complexity was measured using the metric given by
(3)-(5). The resulting complexity maps (Lyapunov exponents)
are shown as background to the traffic scenarios in Fig. 5 and
6. The maps in Fig. 5 were derived using a twelve-minute
window and the ones in Fig. 6 using a three-minute window
(the twelve-minute average did not highlight enough details in
this case). The Lyapunov exponent maps demonstrate the
predictability of the flow in the snap shots used in these figures.
Note that the color scale is unique for each of the cases, but the
numbers on the scale can be compared between cases. The high
numbers indicate less predictability and hence less organized
traffic areas as discussed in Section III.B.

Fig. 5 and 6 demonstrate that, in both scenarios, using
robustness and adaptability as objectives for individual
trajectory planning resulted in more structured aggregate traffic



X (nautical miles)

(a) Shortest path without traffic avoidance 	 (d) Maximum robustness only
No specific pattern.	 Pattern: spread out as possible

(b) Shortest path with traffic avoidance
Pattern: northbound mostly through left hole,
southbound mostly through right hole

(c) Maximum adaptability only
Pattern: outer lanes before hole, along centerline
after the hole

(e) Maximum adaptability and robustness, and shortest path
Pattern: mostly northbound through right hole, southbound
through left hole

Figure 5. Flow patterns in weather line scenario

flow. Looking at the headings of the aircraft, shown by a black
circle at the end of the eight minute history trail, and at the
complexity maps, one can see the following. In case a, which
used shortest path without traffic avoidance, aircraft varied in
selecting their path relative to the hazard in both scenarios
resulting in closer proximity and more random flow patterns.
This is captured by a wide and unorganized spread of high-
Lyapunov-exponent areas in case a of both figures.

All the other cases resulted in a more structured traffic
pattern but in a different manner: In case b of Fig. 5, which
used shortest path but avoided traffic, most aircraft traveled
through the holes in a uniform direction, with occasional
misalignment. In case c of Fig. 5, which used adaptability,
aircraft formed outer lanes before the hazard and traveled along
the centerline afterwards. This pattern resulted because
adaptability tended to concentrate the aircraft trajectory close to
the centerline connecting the initial and final locations. This is
because the number of feasible trajectories is highest near the
centerline (as shown in Fig. 3) which caused the aircraft to hug



(e) Maximum adaptability and robustness, and shortest path
Pattern: 84% of aircraft counterclockwise

Figure 6. Flow patterns in round about scenario

to central hazard. The holes in this scenario were large enough
to allow the aircraft to travel through them in both directions.
This caused locally high Lyuaponov exponents as shown in the
right hole of Fig. 5 c. On the other hand, robustness, which was
used in case d, tended to send the aircraft away from each other
and from the hazards increasing the spacing between them.
This caused aircraft in case d to spread out more than in cases b
and c, and to exhibit a less structured manner. This was also
captured by areas of low predictability around strayed aircraft
in Fig. 5 d. Aircraft in both cases c and d separated from each
other more than in cases a and b. In case e, the aircraft formed a
unidirectional flow through each of the holes. One can see in
Fig. 5 e the valleys (low exponent values) along this
unidirectional flow through the holes. Aircraft that did not
follow this pattern are surrounded with high exponent areas.

In the round about scenario of Fig. 6, most aircraft turned
around the central hazard in a uniform direction relative to the
shortest path case a. This is indicated in the figure by the
percentage of aircraft that selected the counterclockwise
direction. This percentage is higher in cases c-e (70-97 percent)

(a) Shortest path without traffic avoidance
No pattern: 60% of aircraft counterclockwise

(d) Maximum robustness only
Pattern: 70% of aircraft counterclockwise

(b) Shortest path with traffic avoidance
Pattern: 68% of aircraft counterclockwise

(c) Maximum adaptability only
Pattern: 97% of aircraft counterclockwise



than cases a and b (60-68 percent). The Lyapunov exponent
again captures this effect. Case a in Fig. 6 has high exponent
areas concentrated around the central hazard where aircraft
paths cross each other randomly without avoidance. In cases b
through e, the high exponent values are concentrated near the
sources and destinations while the movement areas around the
central hazard are relatively more organized and predictable.

In Fig. 5 and 6 cases c and d exhibited the lowest Lyapunov
exponent values compared to the other cases, reflecting more
organized and predictable patterns for one time step. Fig. 7
shows the average Lyapunov exponents for a series of maps
over time for the scenario of Fig. 6. This average value
represents the amount of information needed (in an
information-theoretic sense) to transform the map to be fully
predictable and organized. Fig. 7 shows that case a has the
highest average value most of the time. This is consistent with
the lack of organization relative to the other cases. On the other
hand, case c has the lowest average most of the time also
consistent with the most structured flow pattern indicated in
Fig. 6. The corresponding plot for the scenario in Fig. 5 did not
show such a consistent difference in the average Lyapunov
exponent between the cases. This may be attributed to the fact
that the patterns in this scenario were less structured over the
full map area and dominated by local misalignments.

The manner and degree to which the traffic self organizes
depends on a number of factors. For example, the following
additional observations are made: (1) cases e of Fig. 5 and 6
combine shortest path, adaptability and robustness in the cost
function (12), with a = 40 and b = 5000. These cases exhibited
aspects from each of the b, c, and d cases: Because of
robustness, aircraft spread out more. Because of adaptability,
they formed a lane closer to the centerline especially after the
hazard. Because of minimizing distance trajectories are
smoother. The weights used in this example were not
optimized and the tradeoff between these factors is a subject of
further research. (2) The density of the traffic, a function of
both the arrival rate and the size of the hazards, affects the
pattern. For example, the aircraft managed to go through the
holes in Fig. 5 in both directions, which caused high
complexity areas captured well by the Lyapunov exponents in
Fig. 5 case c. (3) The first aircraft in the scenario does not

Figure 7. Average Lyapunov exponent for scenario of Fig 6

encounter any traffic and hence makes random decisions if
there are ties between trajectories. The emerging pattern of the
traffic depends on these early decisions. For the same reason,
when the traffic density declines the pattern may switch to a
new one. (4) All aircraft in these scenarios used the same
objective function. This induces implicit coordination and rules
and influences the emerging pattern. (5) The shortest path case,
with traffic avoidance (b) is closer to the adaptability case (c)
than the robustness case (d). This is because the shortest path is
close to the centerline where adaptability is high. The shortest
path trajectory, however, differs from the most adaptable
trajectory because it uses the minimum speed (to minimize path
stretching). Therefore these trajectories were smother and
exhibited less turns. Adaptable trajectories on the other hand
tended to zigzag around the centerline.

The resulting aircraft trajectories were also analyzed for
proximity. Fig. 8 (a and b) display, respectively for the two
scenarios of Fig. 5 and 6, the number of aircraft-seconds when
aircraft were less than 20 nautical miles apart, over the duration
of each scenario. These figures show that, as expected, for both
scenarios the case (a) where aircraft used shortest path without
traffic avoidance exhibited the highest rate of close proximity.
In the first scenario (the two-hole scenario of Fig. 5) the
shortest path with traffic avoidance (case b) exhibited
significantly higher proximity than the other cases (c-e) that
used adaptability and/or robustness. This suggests that, at least
in this scenario, the use of adaptability and/or robustness
metrics increases the separation between aircraft over simple
traffic avoidance. However, this was not apparent in the second
scenario (the round about scenario of Fig. 6) where all cases
that avoided traffic (b-e) exhibited similar proximity.

V. CONCLUSIONS AND FUTURE RESEARCH

The analysis reported in this paper demonstrated that using
adaptability and robustness metrics in planning aircraft
trajectories results in traffic complexity mitigation. Two
scenarios showed signs of self separation and self organization
when using these metrics. The impact was quantified using
both a Lyapunov-exponent-based traffic complexity metric and
a proximity rate measurement. These metrics can be combined
with other metrics in the trajectory planning of pilots, airlines,
and traffic managers. By incorporating these metrics, the
contribution of each aircraft to traffic complexity would be
reduced, even without explicit coordination among aircraft or
for the aircraft by a ground system.

The results reported in this paper are promising, and open
the door for a wide range of future research. Such research
extension includes the investigation of: the sensitivity to
varying a number of factors such as traffic density and severity
of constraints; the effect of dynamic and stochastic decision
making where each aircraft updates its trajectory plan over time
in response to uncertainty; sensitivity to varying the cost
function and the tradeoff between adaptability, robustness and
other metrics of interest to users and traffic managers; the
effect of non-uniform, competing cost functions among
different aircraft; the impact of explicit rules and coordination
on furthering self organization; and the practical application of
the metrics and algorithms presented in real-time systems.
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(a) Traffic complexity for the first scenario (two holes)

(b) Traffic complexity for the second scenario (round about)

Figure 8. Traffic proximity for the two scenarios
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